Search results for "Chemical process modeling"
showing 3 items of 3 documents
2D Hydro-Mechanical-Chemical Modeling of (De)hydration Reactions in Deforming Heterogeneous Rock: The Periclase-Brucite Model Reaction
2020
Deformation at tectonic plate boundaries involves coupling between rock deformation, fluid flow, and metamorphic reactions, but quantifying this coupling is still elusive. We present a new two-dimensional hydro-mechanical-chemical numerical model and investigate the coupling between heterogeneous rock deformation and metamorphic (de)hydration reactions. We consider linear viscous compressible and power-law viscous shear deformation. Fluid flow follows Darcy's law with a Kozeny-Carman type permeability. We consider a closed isothermal system and the reversible (de)hydration reaction: periclase and water yields brucite. Fluid pressure within a circular or elliptical inclusion is initially bel…
Heterogeneous Dinuclear Rhodium(II) Hydroformylation Catalysts—Performance Evaluation and Silsesquioxane-Based Chemical Modeling
2001
Supported, air stable, and reusable hydroformylation catalysts have been prepared by immobilizing dinuclear rhodium(II) complexes bearing ortho-metalated arylphosphane ligands on amorphous silica and mesoporous MCM-41 supports by phosphane tethers. The oligosilsesquioxane model complex of the catalytic site 1 has been prepared analogously and characterized by single-crystal X-ray diffraction analysis.
Comment on "surface restructuring, kinetic oscillations, and chaos in heterogeneous catalytic reactions".
1999
In a recent article Zhdanov studied the oscillating $\mathrm{NO}+{\mathrm{H}}_{2}$ reaction on the Pt(100) single-crystal surface [V. P. Zhdanov, Phys. Rev. E 59, 6292 (1999)]. We have scrutinized his model and found fundamental errors in the chemical modeling, in the modeling of the surface reconstruction and in the simulation procedure itself.